История развития преподавания математики

Первое упоминание о школе встречается в древне египетских источниках за две с половиной тысячи лет до нашей эры, которая называлась дворцовой и обучались в ней жрецами дети царских сановников начаткам арифметики и геометрии. Греческие философы Платон (427-347 г. до н.э.) и Аристотель (384-332 г. до н.э.) разработали педагогическую систему обобщившую некоторый опыт. Римский педагог Квинтилиан (I в.н.э.) разработал основу дидактики (общей методики).

Чешский педагог Ян Анос Коменский (1592-1670 г.) расширил содержание школьного обучения новыми реальными предметами, разработал принципы наглядности, систематичности, прочности обучения, внес много нового в организацию учебной работы: учебный год, урок, текущий и годовой учет знаний, продолжительность учебного дня, твердое расписание уроков и т.д. в главном своем труде «Великая дидактика» Я. Коменский уделил внимание вопросам начального обучения арифметике.

Дидактика математики выделилась из педагогики в трудах швейцарского педагога Иоганна Генриха Песталоццы (1746-1827 г.), который в 1803 г. напечатал «Элементарные книги» – «Наглядное учение о числе» и «Азбука наглядности, или Наглядное обучение об измерении».

Зарождение дидактики математики в России связывается с появлением первого русского учебника арифметики Л.Ф. Магницкого (1703 г.), в котором впервые числа записывались арабскими цифрами, а не Славянскими буквами. Прототипами учебников по систематическим курсам арифметики и алгебры являются «Руководство к арифметике» Леонарда Эйлера (1707-1783) и «Универсальная арифметика». Н.Г. Курганов (ученик Магницкого) использовал конкретно-индуктивный метод в своих учебниках алгебры (1557 г.) и арифметики (1771 г.) и перевел на русский язык знаменитые «Начала» Евклида.

На рубеже XVIII-XIX в.в. академик С.Е. Гурьев выдвинул прогрессивную идею пропедевтических курсов математических дисциплин в школе и более строго, научного изложения. Создатели русской дидактики арифметики для Народной школы: Буссе Ф.И. «Руководство преподавания арифметики» (1830 г.) и Гурьев П.С. «Руководство к преподаванию арифметики малолетним детям» (1839 г.). Крупнейшие представители: Гольденберг А.И., Шохор-Троцкий С.И. (обучение через системы задач), Арженников К.П. и др.

Некоторые основы дидактики геометрии заложены Лобачевским Н.И., академиком Гурьевым С.Е., Осиповским Т.Ф., а первый большой труд посвященный преподаванию систематического курса, – «Материалы по методике геометрии» (1883 г.) принадлежат А.Н. Остроградскому.

Во второй половине XIX в. создаются основы дидактики алгебры, тригонометрия и начал анализа (Стралолюбский А.Н. Ермаков В.П.), Шереметевский В.П.

Система традиционной МПМ в СШ включала общую МПМ и пять частных методик: начального курса арифметики, систематических курсов арифметики, алгебры, геометрии и тригонометрии. В последних содержались конкретные методические рекомендации по изучению теоретических вопросов курса и решения задач и их называли «рецептурными». Общую МПМ называли теоретической и она рассматривала общие вопросы относящиеся к изучению любого математического предмета, как цели обучения математики, математические понятия и предложения, теоремы и их доказательства, задачи и их решения, методы и формы обучения и т.д.

Статьи по теме:

Роль дошкольного учреждения в повышении педагогической культуры семьи
Психолого-педагогическое просвещение родителей с целью повышения их педагогической культуры - одно из направлений деятельности дошкольного учреждения. Планируя психолого-педагогическое просвещение ро ...

Методы решения задач на построение
К основным методам решения задач на построение, изучаемых в средней школе, относятся: 1) Метод геометрических мест. 2) Методы геометрических преобразований: а) метод центральной симметрии; б) метод о ...

Дидактические игры
В отличие от других видов деятельности игра содержит цель в самой себе; посторонних и отдаленных задач в игре ребенок не ставит и не решает. Игра часто и определяется как деятельность, которая выполн ...

Навигация

Copyright © 2021 - All Rights Reserved - www.freshedu.ru