Методика изучения темы «Прямоугольник»

Страница 7

Далее вводится понятия «равнобедренная трапеция» и «средняя линия трапеции», и рассматривается теорема 6.8 (о средней линии трапеции): «Средняя линия трапеции параллельна основаниям и равна их полусумме».

В учебнике «Геометрия 7-9» Л.С. Атанасяна (4) понятие «трапеция» вводится в §2 «Параллелограмм и трапеция» в пункте 44 «Трапеция»:

«Трапецией называется четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны. Параллельные стороны трапеции называются ее основаниями, а две другие стороны - боковыми сторонами.

Трапеция называется равнобедренной, если ее боковые стороны равны. Трапеция, один из углов которой прямой, называется прямоугольной».

Рассмотрим методику изучения темы «Трапеция» на примере учебника А.В. Погорелова.

Трапецией называется четырехугольник, у которого только две противолежащие стороны параллельны. Эти параллельные стороны называются основаниями трапеции. Две другие стороны называются боковыми сторонами.

На рисунке вы видите трапецию ABCD с основаниями АВ и CD и боковыми сторонами ВС и AD.

Трапеция, у которой боковые стороны равны, называется равнобокой. Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.

Теорема 6.8: Средняя линия трапеции параллельна основаниям и равна их полусумме.

Дано: ABCD-трапеция,

QP-средняя линия.

Доказать: QР||ВС,

QP||AD,

QP=½ (BC+AD).

Доказательство.

BP⋂AD=E, ∆PBC=∆PED (по второму признаку равенства треугольников) CP=DP (по построению), PCB=PDE (внутренние накрест лежащие при параллельных прямых ВС и AD и секущей CD),BPC=EPD (вертикальные).

Из равенства треугольников => РВ=РЕ, BC=ED.

Значит средняя линия PQ трапеции является средней линией ∆АВЕ. По свойству сред, линии треугольника PQ||AE и отрезок

pq = ½АЕ= ½(ad+bc).

Ч.т.д.

После введения выше перечисленных понятий школьники решают задачи.

Задача1.

В

трапеции ABCD углы, прилежащие к стороне AD, равны 74 и 81. Определите углы прилежащие к стороне ВС. (устно).

Ответ: ABC=106, BCD=99.

Задача2.

Докажите, что у равнобокой трапеции углы при основании равны.

Дано: ABCD-равнобокая трапеция,

АВ, CD-основания.

Доказать: A=B, D=C.

Доказательство.

BP||AD, ABED - параллелограмм => BE=AD (по свойству параллелограмма) AD=BC (по условию) => ∆ВСЕ - равнобедренный с основанием ЕС. Углы треугольника и трапеции при вершине С совпадают, а углы при вершине Е и D равны как соответственные углы при пересечении параллельных прямых секущей. Поэтому ADC=BCD.

Страницы: 2 3 4 5 6 7 8 9 10

Статьи по теме:

Основные направления социально-педагогической деятельности с детьми с ограниченными возможностями здоровья
Одной из основных задач обучения и воспитания детей с нарушениями интеллекта является становление личности каждого в целом, оптимальное развитие потенциальных возможностей их познавательной деятельно ...

Особенности формирования лексических навыков в младшей школе
Дадим определение лексического навыка. Лексический навык – это способность автоматизировано вызывать из долговременной памяти слово, словосочетание или готовую фразу, соответствующие коммуникативной ...

Детская сказка, как добрый воспитатель нравственности у старших дошкольников
Человек, как существо социальное постоянно взаимодействует с другими людьми. Ему необходимы контакты самые разнообразные: внутрисемейные, общественные, производственные и т.д. любое общение требует о ...

Навигация

Copyright © 2019 - All Rights Reserved - www.freshedu.ru