Методика изучения темы «Прямоугольник»

Страница 7

Далее вводится понятия «равнобедренная трапеция» и «средняя линия трапеции», и рассматривается теорема 6.8 (о средней линии трапеции): «Средняя линия трапеции параллельна основаниям и равна их полусумме».

В учебнике «Геометрия 7-9» Л.С. Атанасяна (4) понятие «трапеция» вводится в §2 «Параллелограмм и трапеция» в пункте 44 «Трапеция»:

«Трапецией называется четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны. Параллельные стороны трапеции называются ее основаниями, а две другие стороны - боковыми сторонами.

Трапеция называется равнобедренной, если ее боковые стороны равны. Трапеция, один из углов которой прямой, называется прямоугольной».

Рассмотрим методику изучения темы «Трапеция» на примере учебника А.В. Погорелова.

Трапецией называется четырехугольник, у которого только две противолежащие стороны параллельны. Эти параллельные стороны называются основаниями трапеции. Две другие стороны называются боковыми сторонами.

На рисунке вы видите трапецию ABCD с основаниями АВ и CD и боковыми сторонами ВС и AD.

Трапеция, у которой боковые стороны равны, называется равнобокой. Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.

Теорема 6.8: Средняя линия трапеции параллельна основаниям и равна их полусумме.

Дано: ABCD-трапеция,

QP-средняя линия.

Доказать: QР||ВС,

QP||AD,

QP=½ (BC+AD).

Доказательство.

BP⋂AD=E, ∆PBC=∆PED (по второму признаку равенства треугольников) CP=DP (по построению), PCB=PDE (внутренние накрест лежащие при параллельных прямых ВС и AD и секущей CD),BPC=EPD (вертикальные).

Из равенства треугольников => РВ=РЕ, BC=ED.

Значит средняя линия PQ трапеции является средней линией ∆АВЕ. По свойству сред, линии треугольника PQ||AE и отрезок

pq = ½АЕ= ½(ad+bc).

Ч.т.д.

После введения выше перечисленных понятий школьники решают задачи.

Задача1.

В

трапеции ABCD углы, прилежащие к стороне AD, равны 74 и 81. Определите углы прилежащие к стороне ВС. (устно).

Ответ: ABC=106, BCD=99.

Задача2.

Докажите, что у равнобокой трапеции углы при основании равны.

Дано: ABCD-равнобокая трапеция,

АВ, CD-основания.

Доказать: A=B, D=C.

Доказательство.

BP||AD, ABED - параллелограмм => BE=AD (по свойству параллелограмма) AD=BC (по условию) => ∆ВСЕ - равнобедренный с основанием ЕС. Углы треугольника и трапеции при вершине С совпадают, а углы при вершине Е и D равны как соответственные углы при пересечении параллельных прямых секущей. Поэтому ADC=BCD.

Страницы: 2 3 4 5 6 7 8 9 10

Статьи по теме:

Усвоение глухими школьниками системного устройства языка
Язык, применяемый и изучаемый учащимися, является фактором, системообразующим саму методику обучения языку. Первой особенностью языка как знаковой системы является его целостность. Все элементы языка ...

Социально-педагогическая деятельность с детьми группы риска
Любая проблема лучше решается комплексно. Именно комплексный социально-педагогический подход в работе с этой категорией детей и должен быть положен в основу разработки социально-педагогических технол ...

Особенности детской игры в старшем дошкольном возрасте
Игра старших дошкольников, как правило, коллективна. Она отличается разнообразием тематики, сложностью и развернутостью сюжетов. Дети отражают в играх события и ситуации, далеко выходящие за рамки их ...

Навигация

Copyright © 2019 - All Rights Reserved - www.freshedu.ru