Связь с другими науками

МПМ тесно связана с математической наукой и ее развитием. Она анализирует идеи, методы и содержание математики как науки, занимается отбором материала, что составляет содержание математики как учебного предмета. Развитие же самой математики оказывает влияние на МП этой науки. Изменение содержания математики, ее методов и идей приводит к изменению содержания математики как учебного предмета.

Методологической основой преподавания математики является философия, которая раскрывает наиболее общие закономерности научного познания. Содержание и цели обучения возникают из задач развития общества и обуславливают методы, средства и формы обучения.

МПМ опирается на логику. С одной стороны, обучение математике есть одновременно и обучение ее логико-математическому языку, с другой – сама математика, являясь дедуктивной наукой, ОСНОВЫВАЕТСЯ НА ЗАКОНАХ ЛОГИКИ. На их базе МПМ разрабатывает рекомендации относительно определений и классификации понятий, вопросы воспитания логической грамотности учеников и развития их логического мышления.

Методика использует достижения психологии и основывается на них. Например, педагогическая психология раскрывает закономерности психической деятельности учеников: как они воспринимают окружающую действительность и думают, как овладевают знаниями, умениями и навыками, как формируются их интересы и способности, Все это имеет самое непосредственное отношение к процессу обучения математике. Методика учитывает возрастные особенности учеников, данные психологии как в построении школьного курса математики в целом, так и в методах на каждом этапе обучения.

МПМ главным образом связана с педагогикой. Она опирается на теорию воспитания, потому что обучение математике, как и каждому учебному предмету, должно быть воспитывающим. В большей степени методика связана с дидактикой. Например, содержание школьного курса математики разрабатывается на основе теории содержания общего и политехнического образования и т.д.

Статьи по теме:

Понятие и виды дидактических игр
Многие ученые пытались дать определение понятию игра. К. Гросс был первым автором, который попытался внести ясность в вопрос определения игры. Он пытался классифицировать детские игры и найти новый п ...

Развитие технического творчества учащихся
Развитие технического творчества учащихся можно применять совершенно с другой целью, чем это требуется по условию. Здесь важно иметь в виду, что деятельность учащихся, их конкретные действия, характе ...

Принципы дидактики в обучении математике
Методика не только использует достижения дидактики для усовершенствования учебного процесса, но и сама оказывает влияние на развитие дидактики МПМ, решая свои задачи, учитывает основные общедидактиче ...

Навигация

Copyright © 2019 - All Rights Reserved - www.freshedu.ru