Анализ учебников по геометрии основной школы

Страница 3

4) А.П. Кисилев, Н.А. Рыбкин

Учебник содержит пять глав и сборник задач по геометрии.

В главе 1 “Прямая линия” в §1 “Углы ” рассматривается построение перпендикулярных прямых с помощью угольника и линейки. §3 “Треугольники” содержит пункт “Геометрическое место”, где дается определение ГМТ, и приводятся примеры: что является ГМТ серединного перпендикуляра и биссектрисы. Далее следует § 4 “Основные задачи на построение”, где рассматриваются задачи на построение треугольника по трем его сторонам; угла, равного данному; биссектрисы угла; перпендикуляра к прямой из данной точки, лежащей и не лежащей на прямой; серединного перпендикуляра; задача о делении отрезка пополам; построение треугольника по основанию, углу, прилежащему к основанию, и сумме двух боковых сторон. После рассмотренных задач приводится схема решения задач на построение: анализ, построение, доказательство, исследование. В конце §4 имеется блок задач на построение для самостоятельного решения, который содержит задачи на построение суммы, разности углов; деление угла на n частей; построение различных треугольников по различным элементам; разделение данного отрезка на n равных частей; задачи на нахождение ГМТ, равноудаленных от двух данных точек, от трех вершин треугольника, от трех сторон треугольника и т.д. В §5 “Параллельные прямые” рассматривается построение параллельных прямых с помощью угольника и линейки. §6 “Параллелограммы и трапеции” содержит пункт “Задачи на построение”, в котором рассматриваются методы параллельного переноса, симметрии и примеры задач. Также учащимся предлагается самостоятельно решить задачи на построение трапеций, четырехугольников и треугольников по различным данным элементам, основываясь на изученных методах. В конце главы 1 имеется ряд задач на нахождение ГМТ и блок задач на построение.

В главе 3 “Подобные фигуры” в §4 “Подобие фигур произвольного вида” имеется пункт “Задачи на построение”, в котором рассматривается метод подобия, но задач на применение метода данный пункт не содержит. В §5 “Некоторые теоремы о пропорциональных отрезках” рассматривается задача о построении четвертого пропорционального отрезка. В §6 “Метрические соотношения между элементами треугольника и некоторых других фигур” рассматривается задача о построении отрезка, среднего пропорционального между двумя данными отрезками. §8 “Тригонометрические функции острого угла” содержит пункт “Построение угла по заданной величине одной из его тригонометрических функций”. В §9 “Понятие о приложении алгебры к геометрии” рассматривается задача о разделении отрезка в среднем и крайнем отношении, а затем следует пункт “Алгебраический способ решения геометрических задач”, который раскрывает алгебраический метод решения задач на построение. Следующим пунктом идет “Построение простейших формул” с помощью циркуля и линейки. В конце главы 3 содержится ряд задач на нахождение ГМТ и блок задач на построение.

В главе 4 “Правильные многоугольники” в §1 “Правильные многоугольники” рассматривается задача: вписать в данный круг правильный десятиугольник и определить его сторону в зависимости от радиуса. Также далее в пункте “На сколько равных частей можно делить окружность с помощью циркуля и линейки?”, в котором дается указание, как разделить окружность на определенное равное количество частей (и вписать в окружность правильные многоугольники с таким числом сторон).

В главе 5 “Измерение площадей” в §1 “Площади многоугольников” рассматриваются задачи на построение треугольника (квадрата), равновеликого данному; квадрата, площадь которого равна сумме (разности) площадей двух данных квадратов; площадь которого относится к площади данного квадрата, как m:n; разделить данный треугольник на m равновеликих частей прямыми, параллельными его стороне. В §2 “Площадь круга и его частей” приводится пункт, в котором рассказывается о неразрешимой задаче о квадратуре круга. В конце главы 5 содержится блок задач на построение.

В сборнике задач также имеются задачи на построение.

Вывод: В учебниках для 5-6 классов задачи на построение практически не рассматриваются как самостоятельные. Чаще всего это задания на построение фигур по заданным размерам. Процент заданий на построение из всех геометрических заданий: 5 класс – 39%, 6 класс – 34%. В целом картина кажется достаточно отрадной. Однако если учесть, что сам по себе геометрический материал в учебниках не превышает 13-16% от всего содержания учебника, то указанный процент заданий на построение падает до 4-6% [3].

Во всех учебниках по геометрии для 7-9 класса задачи на построение рассматриваются как самостоятельные в конце 7 класса. Осуществляются следующие элементарные построения: деление отрезка пополам; откладывание угла, равного данному; построение биссектрисы угла; построение перпендикуляра к прямой из данной точки, не лежащей на этой прямой. В качестве метода решения задач на построение в учебниках (кроме учебника) рассматривается метод геометрического места точек. Схема решения приводится в учебниках. В учебнике схема приводится без анализа. В учебнике ее нет.

Страницы: 1 2 3 4

Статьи по теме:

Понятие сказкотерапии
Сказкотерапия является самым древним психологическим и педагогическим методом. Знания о мире, о философии жизни испокон веков передавались из уст в уста и переписывались, каждое поколение перечитывал ...

Методы и методология исследования
Основой методологического исследования является экспериментальное исследование. Экспериментальное исследование было проведено в 3 «А» классе в средней общеобразовательной школы № 2 города Ошмяны. В р ...

Задачи и принципы социальной педагогики
Задачи социопедагогики · осуществление социально-педагогической оценки (экспертизы) деятельности государства, общественных организаций, движений, партий, а также учреждений и коллективов; · исследова ...

Навигация

Copyright © 2019 - All Rights Reserved - www.freshedu.ru