Анализ учебно-методической литературы

Страница 1

1) И.Ф. Шарыгин “Задачи по геометрии (Планиметрия)”

Книга, состоящая из двух частей, включает более 600 задач по планиметрии. Вторая часть содержит параграф, посвященный теме геометрических мест точек. Задач предлагается немного, они достаточно сложные, предназначенные по большей мере для специализированных классов, для студентов. Задачи сопровождаются указаниями и подробными решениями. В некоторых других параграфах второй части, таких как, например, “Треугольник” и “Окружности и касательные”, также встречаются задачи на нахождение геометрического места точек.

2) В.В. Прасолов “Задачи по планиметрии (в двух частях)”

В этот сборник включены нестандартные геометрические задачи несколько повышенного по сравнению со школьными знаниями уровня. Для всех задач прилагаются решения. Книга состоит из двух частей. Первая содержит классические темы планиметрии, вторая – геометрические преобразования и задачи на олимпиадную и кружковую тематику.

Всего 29 глав. За основу классификации задач приняты методы решения геометрических задач. Одна из глав посвящена методу ГМТ, которая содержит достаточное количество задач на построение разного уровня сложности, в которых применяется данный метод. Применяются как основные ГМТ, так и более сложные.

Есть глава, посвященная геометрическим построениям треугольников, четырехугольников, окружностей с помощью различных методов, включает в себя разнообразный набор задач на построение. Кроме того, в этой главе рассматриваются построения с помощью одной линейки, одной двусторонней линейки, с помощью одного прямого угла. Также здесь приводятся необычные построения (например, деление угла на n равных частей).

Имеются отдельные главы, посвященные методам параллельного переноса, центральной симметрии, осевой симметрии, поворота, гомотетии, в которых также хорошо отражена суть методов и содержится хороший набор задач разного уровня на применение каждого метода. Даются основные понятия к каждой главе.

3) Я.П. Понарин “Элементарная геометрия (в двух томах)”

Книга предназначена для более углубленного изучения элементарной геометрии. Для учащихся школ, лицеев, гимназий с математической специализацией и студентов. Первый том посвящен планиметрии и преобразованиям плоскости, второй – стереометрии и преобразованиям пространства.

В данном пособии уделено много внимания методу геометрических преобразований, в связи с тем, что чисто геометрические методы в последнее время отходят на второй план и данный метод до сих пор не нашел своего места в школьном курсе геометрии. Как пишет автор, его пытались изучать с самого начала, растянув на всю восьмилетнюю школу. Теперь предполагается заняться им в конце изучения планиметрии. Но по-прежнему ученики не владеют им даже на начальном уровне. В книге расширен материал школьных учебников, добавлены многие геометрические факты. Теория геометрических построений вынесена за рамки пособия. В систематическом виде изложен теоретический и задачный материал по методу геометрических преобразований плоскости. Он позволяет оригинально и красиво решать многие геометрические задачи. Большую часть пособия составляют задачи различной степени трудности, к большинству из них даны ответы или краткие указания.

Первый том содержит две части. Вторая часть посвящена преобразованиям плоскости. В частности две первые ее главы описывают движения плоскости и методы решения задач на построение (центральная симметрия, осевая симметрия, параллельный перенос, поворот, подобие).

Второй том также содержит две части. В первой части четвертая глава посвящена ГМТ. Здесь рассматриваются различные ГМТ плоскости, а также ГМТ пространства: разность квадратов расстояний, сумма квадратов расстояний, сфера Аполлония. Применение метода ГМТ для решения стереометрических задач. Вторая часть посвящена преобразованиям пространства аналогично второй части первого тома. Две первые ее главы описывают движения пространства и методы решения задач на построение (центральная симметрия, осевая симметрия, параллельный перенос, поворот, подобие).

В книге отдельно не выделяется применение метода ГМТ для планиметрических задач, а также не рассмотрен алгебраический метод.

4) И.И. Александров “Сборник геометрических задач на построение с решениями”

Книга насчитывает более 600 задач на построение, что представляет учащимся и преподавателям огромный выбор. В основном книга посвящена решению задач на построение при помощи циркуля и линейки, но последний раздел посвящен решению задач одним циркулем, двусторонней линейкой, прямого или острого угла, односторонней линейкой с применением вспомогательной окружности Штейнера.

Страницы: 1 2

Статьи по теме:

Основные характеристики самостоятельной работы студентов
Аналитики Российского научно-исследовательский институт высшего образования (НИИВО) выделяет основные характеристики СРС: 1. Психологические условия успешности СРС. Прежде всего – это формирование ус ...

Государственная политика в сфере народного образования. Проблема финансирования земских и церковно-приходских школ
Начало второй половины XIX столетия в России характеризовалось большими изменениями. Эпоха «великих реформ» Александра II отличалась удивительным благородством замыслов и не менее удивительным отсутс ...

Цель, задачи, содержание и организация исследования
На основании анализа психолого-педагогической литературы и выдвинутой нами гипотезы, целью экспериментального исследования являлось изучение и овладение лексической сочетаемостью слов детьми дошкольн ...

Навигация

Copyright © 2019 - All Rights Reserved - www.freshedu.ru