Далее вводится понятия «равнобедренная трапеция» и «средняя линия трапеции», и рассматривается теорема 6.8 (о средней линии трапеции): «Средняя линия трапеции параллельна основаниям и равна их полусумме».
В учебнике «Геометрия 7-9» Л.С. Атанасяна (4) понятие «трапеция» вводится в §2 «Параллелограмм и трапеция» в пункте 44 «Трапеция»:
«Трапецией называется четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны. Параллельные стороны трапеции называются ее основаниями, а две другие стороны - боковыми сторонами.
Трапеция называется равнобедренной, если ее боковые стороны равны. Трапеция, один из углов которой прямой, называется прямоугольной».
Рассмотрим методику изучения темы «Трапеция» на примере учебника А.В. Погорелова.
Трапецией называется четырехугольник, у которого только две противолежащие стороны параллельны. Эти параллельные стороны называются основаниями трапеции. Две другие стороны называются боковыми сторонами.
На рисунке вы видите трапецию ABCD с основаниями АВ и CD и боковыми сторонами ВС и AD.
Трапеция, у которой боковые стороны равны, называется равнобокой. Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.
Теорема 6.8: Средняя линия трапеции параллельна основаниям и равна их полусумме.
Дано: ABCD-трапеция,
QP-средняя линия.
Доказать: QР||ВС,
QP||AD,
QP=½ (BC+AD).
Доказательство.
BP⋂AD=E, ∆PBC=∆PED (по второму признаку равенства треугольников) CP=DP (по построению),
PCB=
PDE (внутренние накрест лежащие при параллельных прямых ВС и AD и секущей CD),
BPC=
EPD (вертикальные).
Из равенства треугольников => РВ=РЕ, BC=ED.
Значит средняя линия PQ трапеции является средней линией ∆АВЕ. По свойству сред, линии треугольника PQ||AE и отрезок
pq = ½АЕ= ½(ad+bc).
Ч.т.д.
После введения выше перечисленных понятий школьники решают задачи.
Задача1.
В
трапеции ABCD углы, прилежащие к стороне AD, равны 74 и 81. Определите углы прилежащие к стороне ВС. (устно).
Ответ:
ABC=106,
BCD=99.
Задача2.
Докажите, что у равнобокой трапеции углы при основании равны.
Дано: ABCD-равнобокая трапеция,
АВ, CD-основания.
Доказать:
A=
B,
D=
C.
Доказательство.
BP||AD, ABED - параллелограмм => BE=AD (по свойству параллелограмма) AD=BC (по условию) => ∆ВСЕ - равнобедренный с основанием ЕС. Углы треугольника и трапеции при вершине С совпадают, а углы при вершине Е и D равны как соответственные углы при пересечении параллельных прямых секущей. Поэтому
ADC=
BCD.
Статьи по теме:
Элементы принципа народности воспитания по учению Ушинского К.Д.
Для осуществления принципа народности в деле воспитания Ушинский К.Д. считал необходимым, чтобы: 1) в основу воспитания был положен труд, 2) воспитание и обучение проводились на родном языке, 3) школ ...
Экологическое значение проведенного исследования
В комплексе глобальных проблем современного человечества, представляющих концентрированное выражение трудностей и сложностей социального и духовного развития нашей цивилизации, чьё решение требует об ...
Личность в организованном коллективе
Важнейший коллектив, к которому принадлежит старшеклассник и под влиянием которого формируется его личность — это школьный класс. Ученический коллектив, замечает Л. И. Новикова, с одной стороны — «фу ...