Методика изучения темы «Прямоугольник»

Страница 1

В учебнике «Геометрия 7-11» А.В. Погорелова понятие «прямоугольник» вводится в §6 «Четырехугольники» в пункте 54 «Прямоугольник»: Прямоугольник - это параллелограмм, у которого все углы прямые.

В учебнике «Геометрия 7-9» Л.С. Атанасяна тема «Прямоугольник рассматривается в §3 «Прямоугольник, ромб, квадрат» в п.45 «Прямоугольник»: в начале параграфа вводится определение: «прямоугольником называется параллелограмм, у которого все углы прямые», а затем рассматривают свойство прямоугольника (диагонали прямоугольника равны) и признак прямоугольника (если в параллелограмме диагонали равны, то этот параллелограмм - прямоугольник).

Рассмотрим методику изучения темы «Прямоугольник» на примере учебника А.В. Погорелова.

Прямоугольник - это параллелограмм, у которого все углы прямые.

Для изучения свойства прямоугольника, классу можно предложить вопросы:

1. Равны ли диагонали у произвольного параллелограмма? (на доске нарисован параллелограмм, не являющийся прямоугольником).

2. Равны ли диагонали у прямоугольника?

3. Докажите равенство диагоналей прямоугольника ABCD, рассмотрев треугольники BAD и CDA.

4. Сформулируйте теорему о свойствах прямоугольника.

Теорема 6.4.

Диагонали прямоугольника равны.

После введения определения и свойства прямоугольника школьники решают задачи.

Задача 1

. Докажите, что если у параллелограмма все углы равны, то он является прямоугольником.

Дано: ABCD-параллелограмм,

A=B=С=D.

Доказать: ABCD-прямоугольник.

Доказательство.

A+B=180, т.к. они являются внутренними односторонними при параллельных прямых ВС и AD и секущей АВ. => A=B=90.

=> ABCD - прямоугольник.

Задача 2.

В параллелограмме из вершин углов на противолежащие стороны опущены перпендикуляры. Докажите, что полученный четырехугольник - прямоугольник.

Дано: GBFD-параллелограмм,

BAGD,DCBF.

Доказать: ABCD-прямоугольник.

Доказательство.

BC||AD, так как GBFD - параллелограмм;

BAD=90, так как BAGD.

АВС=90, так как BAD и ABC— внутренние односторонние углы при BF||GD и секущей АВ.

BCD=90, так как DCBF.

CAD=90, так как CAD и BCD - внутренние односторонние углы при BF||GD и секущей DC.

Страницы: 1 2 3 4 5 6

Статьи по теме:

Определение динамики и эффективности процесса по развитию лексической сочетаемости слов детьми старшего дошкольного возраста с системными нарушениями речи
Цель контрольного эксперимента - произвести оценку эффективности коррекционной работы по овладению лексической сочетаемостью слов детьми старшего дошкольного возраста с системными нарушениями речи, В ...

Понятия взаимодействия, сотрудничества
взаимодействие сотрудничество педагог дошкольный Сегодня, признав приоритет семейного воспитания перед общественным, возложив ответственность за воспитание детей на родителей мы понимаем, что это тре ...

Понятие «самостоятельная работа», ее функции и виды
Обучение предполагает активную деятельность, как учителя, так и учеников. Как бы не старался учитель, если школьники не работают – процесса познания нет. Главное - приучить детей трудиться самостояте ...

Навигация

Copyright © 2025 - All Rights Reserved - www.freshedu.ru