Методика решения задач на построение

Страница 2

Рис. 1

Рассмотрим решение задачи: “Построить квадрат по его диагонали”.

Анализ. Проведя диагональ А1С1 (рис. 1), мы видим, что построение квадрата сводится к построению равнобедренного прямоугольного треугольника А1В1С1 по его гипотенузе A1C1, который затем легко дополнить до квадрата.

Построение. Треугольник А1В1С1 можно строить различными способами. Например:

1) Строим угол B1A1C1, содержащий 45°, и на одной его стороне откладываем отрезок А1С1, и равный данной диагонали. Проведя C1B1A1B1, получим треугольник А1В1С1, который дополняем до квадрата A1B1C1D1, что можно сделать различными способами.

2) Проведем через середину А1С1 перпендикуляр В1О1А1С1 и отложим B1O1=A1O1 и соединим В1 с А1 и С1; получим треугольник A1B1C1.

3) На А1С1, как на диаметре, строим окружность и из точки О1 восставляем перпендикуляр О1В1А1С1 до пересечения с окружностью в точке B1. Соединив В1 с А1 и С1, получим треугольник A1B1C1. Проведя B1D1A1C1, мы сразу можем получить точки B1 и D1, как и в предыдущем случае. Очевидно, что построение треугольника A1B1C1 возможно и другими способами.

Решение одной и той же задачи несколькими способами усиливает интерес учащихся к задачам на построение и сознательное отношение к решению таких задач. Если решать задачи на построение все время по заранее указанным методам, то этим самым сковывается изобретательность и инициатива учащихся в нахождении различных и оригинальных способов решения и им трудно научиться самостоятельно решать конструктивные задачи. Они применяют в первую очередь знания изучаемого материала и навыки, полученные при решении задач, предшествующих данной. Если решались задачи, требующие применения определенного метода, то и для предложенной задачи они изберут тот же знакомый им путь решения, даже если он нерационален. Указание учителя на существование более простого способа не дает должного эффекта, так как предложенное учителем решение кажется учащимся искусственным, которого они сами не смогли бы найти.

Конечно, если это делать до того как ученики приобретут прочные навыки в отыскании решений различными способами, то результаты окажутся отрицательными. Внимание учащихся каждый раз будет распыляться между всеми способами, и они ни одного из них не усвоят основательно, чтобы применять его достаточно сознательно.

Различными способами хорошо решать задачи в конце учебного года, при повторении курса геометрии, когда учащиеся уже имеют достаточные навыки в решении задач на построение. Задачу, допускающую различные способы решения, лучше задавать на дом, чтобы они не только решили, но и нашли наиболее простое решение.

После того как фигура построена, необходимо установить, удовлетворяет ли она условиям задачи, то есть показать, что фигура, полученная из данных элементов определенным построением, удовлетворяет всем условиям задачи. Значит, доказательство существенно зависит от способа построения. Одну и ту же задачу можно решать различными способами, в зависимости от намеченного при анализе плана построения, а поэтому, и доказательство в каждом случае будет свое. Доказательство представляет собой часть решения задачи, по своему логическому содержанию обратную анализу. Если в анализе устанавливается, что всякая фигура, удовлетворяющая поставленным условиям, может быть найдена таким-то и таким-то путем, то в этой, третьей части решения доказывается обратное положение. Это обратное положение в общем виде может быть сформулировано так: если некоторая фигура получена из данных элементов таким-то построением, то она действительно удовлетворяет поставленным условиям. В Приложении 3 приведено решение задачи: “Построить трапецию по четырем сторонам”.

При решении простейших задач, когда все условия задачи находят непосредственное отражение в плане построения, нет необходимости доказывать, что фигура, полученная из данных элементов таким построением, является искомой. Например: “Построить треугольник по двум сторонам и углу между ними”. Здесь доказательство сводится к простой проверке, такие ли взяли стороны, как данные, и будет ли построенный угол равен данному. В подобных задачах доказательство является излишним, ибо правильность решения обеспечивается соответствием построения анализу и данным условия задачи.

Доказательство не просто зависит от анализа и построения, между ними существует взаимосвязь и взаимообусловленность. Построение проводится по плану, составленному при анализе. Таких планов можно указать несколько. Построение и доказательство являются своеобразным критерием правильности и рациональности составленного плана. Если план не осуществим имеющимися инструментами или же построение оказывается нерациональным, мы вынуждены искать новый план решения. Аналогичным образом и доказательство, и исследование влияют на анализ, предопределяя нередко выбор плана решения.

Страницы: 1 2 3

Статьи по теме:

Регулирование и контроль над ходом учебно-познавательной деятельности
Регулирование учебно-познавательной деятельности состоит в том, чтобы в каждом случае и на каждой стадии обучения она соответствовала целевым установкам и задачам последнего. На регулирование учебног ...

Понятие и значение «самостоятельная работа» студентов педагогических колледжей при изучении курса «Методика физического воспитания и развитие детей»
В словаре русского языка С.И.Ожегова, слово «самостоятельность» обозначает совершение чего-нибудь без посторонней помощи, без постороннего участия. Опираясь на данное определение и рассматривая разли ...

Теоретико-множественный смысл натурального числа, нуля
Так как любому непустому конечному множеству соответствует только одно натуральное число, то вся совокупность конечных множеств разбивается на классы равномощных множеств. В одном классе будут содерж ...

Навигация

Copyright © 2019 - All Rights Reserved - www.freshedu.ru